Formation of guanoxabenz from guanabenz in human liver. A new metabolic marker for CYP1A2.

نویسندگان

  • B Clement
  • M Demesmaeker
چکیده

The in vitro N-hydroxylation of guanabenz as well as the corresponding N-dehydroxylation of guanoxabenz has been previously detected in biotransformation studies with microsomal fractions of different species including human hepatic microsomes. Furthermore, the N-hydroxylation of guanabenz was found to be catalyzed by enriched cytochrome P450 (P450) fractions in reconstituted systems. Strong correlations between 7-ethoxyresorufin O-deethylation (r = 0. 96; p < 0.001), caffeine N-demethylation (r = 0.92; p < 0.001), respectively, and guanabenz N-hydroxylation activities were demonstrated in 10 human liver microsomal preparations. Studies with microsomes from human B-lymphoblastoid cell lines expressing human cytochrome P450 enzymes proved that CYP1A2 is the major isozyme responsible for this metabolic pathway. Further, P450 isozymes did not show any detectable conversion rates. The reaction was inhibited in presence of the potent CYP1A2 inhibitors alpha-naphthoflavone (7, 8-benzoflavone) and furafylline. The N-reduction of guanoxabenz to guanabenz exhibits a significant correlation to the benzamidoxime N-reduction after incubation with 10 human liver microsomal preparations (r = 0.97; p < 0.001). The formation of benzamidine from benzamidoxime was described previously to be catalyzed by the benzamidoxime reductase. These results suggest that the guanabenz N-hydroxylation is mediated via CYP1A2, whereas the corresponding guanoxabenz N-reduction is catalyzed by an enzyme system composed of cytochrome b5, NADH cytochrome b5-reductase, and benzamidoxime reductase. The high affinity of guanabenz to CYP1A2 and the distinct selectivity of this P450 isozyme toward guanabenz confirms the in vitro guanabenz N-hydroxylation to be a suitable metabolic marker for CYP1A2 in biotransformation studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hepatic, extrahepatic, microsomal, and mitochondrial activation of the N-hydroxylated prodrugs benzamidoxime, guanoxabenz, and Ro 48-3656 ([[1-[(2s)-2-[[4-[(hydroxyamino)iminomethyl]benzoyl]amino]-1-oxopropyl]-4-piperidinyl]oxy]-acetic acid).

In previous studies, it was shown that liver microsomes from rabbit, rat, pig, and human are involved in the reduction of N-hydroxylated amidines, guanidines, and amidinohydrazones of various drugs and model compounds (Drug Metab Rev 34: 565-579). One responsible enzyme system, the microsomal benzamidoxime reductase, consisting of cytochrome b5, its reductase, and a cytochrome P450 isoenzyme, w...

متن کامل

Caffeine as a marker substrate for testing cytochrome P450 activity in human and rat.

The current knowledge on the involvement of cytochrome P450 (P450, CYP) isoforms in the metabolism of caffeine in rat and human liver is reviewed. Attention is also paid to species- and concentration-dependent metabolism of caffeine. Finally, we discuss the P450-mediated metabolism of caffeine in relation to coffee addiction and drug interactions. Due to its safety, favorable pharmacokinetic pr...

متن کامل

Expression of human cytochrome P450 1A2 in Escherichia coli: a system for biotransformation and genotoxicity studies of chemical carcinogens.

In this study we describe the development of strain BMX100, a new Escherichia coli K12 tester strain, derived from MX100, a strain which was constructed for detection of mutagens and for mechanistic studies of chemical carcinogens. We demonstrate here that strain BMX100 can be used for stable expression of human CYP1A2 or human CYP1A2 fused to rat liver NADPH cytochrome P450 reductase. Mutageni...

متن کامل

Enzyme kinetics for the formation of 3-hydroxyquinine and three new metabolites of quinine in vitro; 3-hydroxylation by CYP3A4 is indeed the major metabolic pathway.

The formation kinetics of 3-hydroxyquinine, 2'-quininone, (10S)-11-dihydroxydihydroquinine, and (10R)-11-dihydroxydihydroquinine were investigated in human liver microsomes and in human recombinant-expressed CYP3A4. The inhibition profile was studied by the use of different concentrations of ketoconazole, troleandomycin, and fluvoxamine. In addition, formation rates of the metabolites were corr...

متن کامل

Involvement of CYP1A2 and CYP3A4 in lidocaine N-deethylation and 3-hydroxylation in humans.

The roles of cytochrome P-450 (CYP) enzymes in the N-deethylation, i.e., formation of monoethylglycinexylidide (MEGX), and 3-hydroxylation of lidocaine were studied with human liver microsomes and recombinant human CYP isoforms. Both CYP1A2 and CYP3A4 were found to be capable of catalyzing the formation of MEGX and 3-OH-lidocaine. Lidocaine N-deethylation by liver microsomes was strongly inhibi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 25 11  شماره 

صفحات  -

تاریخ انتشار 1997